Thursday, November 6, 2014

Cognitive enhancement montage location: L A DLPFC, R C Supra orbital

Interest in TDCS for cognitive enhancement and for clinical purposes "at home" is growing due to the broad success in the research, the non invasive nature of the therapy, and the ease of making a device or purchasing a clinical device. Because of the grey area of regulation, the manufacturers of devices that can perform the regulated direct current necessary for tDCS do not shout very loud what to do with their devices. The responsibility where to put the electrodes is generally up to the consumer. Hence this blog entry helps clarify, maybe just a little, how to locate a common montage used for cognitive enhancement (as well as depression): Left Anodal dorsolateral prefrontal cortex (DLPFC) and Right Cathodal supra orbital position.

The L DLPFC and R Supraorbital position is also defined as F3/Fp2 on the 10/20 EEG head mapping system, and on the 10/20 system it looks something like this.

Now if you are looking at this picture, and looking in the mirror it is not exactly clear where these points lie (at least to me)

Even though measuring from cranial landmarks is one way to find these points, I always question measuring on the head, or body, because of the size differences between people. Hence to make it easier to locate the points, below are numerous pictures.

Left Anode Dorsolateral Prefrontal Cortex (DLPFC)
The left is obviously the left side of the head, and the anode is the more positive of the two leads (green wire on the Cognitive kit); current goes from electronics to anode through the head to cathode back to the electronics. For the position of the DLPFC, check out the cranium below:

And on me pointing and with a sponge electrode(see there is an advantage to having little hair, better tDCS montage location and better electrode connection).

Right Cathodal Supraorbital

The more negative electrode goes with the Cathode, often, but not always, the black wire or connector. This position is easier to find. The Supraorbital position is above (superior) to the supraorbital ridge, the brow ridge. Start with your eyes straight forward, move up (superiorly) until just over the supraorbital ridge, there you are. Some pictures below:

Putting it all together:

(for the one above, the L DLPFC electrodes should be under the red band, but there was definitely enough sponge surface area for current flow).

Next will be the primary motor cortex (M1)

Thursday, October 9, 2014

Cognitive kit on its way

The Cognitive kit is a simple to use, safe, very straightforward way to implement tDCS cognitive enhancement sessions. With the Cognitive kit, everything is included to perform safe and easy sessions, with flexibility of any montage. Unlike all other devices, the Cognitive kit includes the more expensive Amrex sponge electrodes in the price of the kit, no expensive adapters, no extras, all included. And it is designed to be small enough to fit in your pocket for more flexibility for the user.

We are a small company, with limited resources so we are growing the company with multiple small builds, each new one larger than the last. Hence it will take a few months to catch up with demand, we apologize.

But this build of the Cognitive kit is on its way (see populated PCBs below). The release date is October 20, but we may be able to release earlier.

See for more information and email to find out about early release and release information.

Wednesday, July 23, 2014

The Cognitive kit is available

The Cognitive kit, an easy-to-use hand held cognitive enhancement device, is now available for sale. Cost is $200 and $20 for shipping FEDEX GND US and Canada. We are working on reliable, inexpensive international shipping options but not available now.

Friday, June 13, 2014

Introducing The Cognitive Kit

We are excited to offer a new cognitive enhancement device based on tDCS, The Cognitive Kit. The Cognitive Kit is a simple, safe, easy to use kit that provides everything needed for a safe cognitive enhancement session. Included in the $200 is the hand held device, 2 x 9V devices, headband, and 2 x Amrex sponge electrodes. That's right, we believe in safety and comfort so much we have included the best electrodes in the kit.

The Cognitive Kit will be commercially available in mid July, we are not taking pre-orders (don't believe in them), but if you are interested, after you check out the website, email Keith at and I will keep you informed of the release.

Sales will be North America and internationally. Shipping charges are still being figured out.

Thursday, May 8, 2014

The Electrical Nature of tDCS

When there is a description of a circuit or circuit elements, you see even some of the smartest people become all glazed over, as if the words current or Ohm's Law inexplicably creates a block in understanding (I must admit, the same thing happens to me with probability math, I just can't get my head around it). The concepts of basic circuit theory are indeed simple, and luckily the circuit theory of basic tDCS is indeed straightforward. I will do my best to dispel some confusion about current flow, brain currents, and anode and cathode.

Consider the drawing below, a simple tDCS setup using current regulating diodes. Firstly, this is a DC circuit, none of the values are changing with time. After it is powered up and reached a steady state, it keeps that value. A current can only occur if there is a closed loop, and since there is only one loop, there can only be one current (I).

In most tDCS circuits a current regulating device is used. That means even with varying input voltage (i.e. as the battery changes) and with varying load (i.e. if the head resistance changes due to drying of the sponges or movement changing the electrode position) the current will still remain the same. Now you see why simple current regulating devices (in this case a Current Regulating Diode (CRD)) are perfectly suited for tDCS. What this means that as long as you have a bias voltage, and an appropriate load, the current will be 1mA, and the current will only flow in one direction.

There is confusion about current direction. We electrical engineers like to use current (because algebraic equations can be used to calculate current and voltage), and in the DC situation, current always flows from positive (+) to negative (-). Not to confuse anybody, but charge (and electrons) flow in the opposite direction but that is not relevant here because all circuit elements are best described using current.

All the math you need for this discussion is Ohms law,  V = I x R or I = V/R. What that means is if there is a smaller resistance, the current will be greater and also if there is a resistance and there is a current, there is a voltage drop over that resistance. OK back to tDCS.

Looking at the tDCS schematic above, the 2k Ohm resistor is there to limit the current; if the CRD fails, and there is 18V at the head. The head resistance will vary due to numerous things, but a good range is 2kOhm to 6kOhm. For worst case, use 2 kOhm. So if there is 18V at the head, and the current regulator is not working, then the maximum current can be 4.5mA (18V/4kOhm).  The 2kOhm will also limit the current in fail mode or normal mode if the electrodes are shorted together. During normal functioning, you can short them together and the CRD is still happy to produce 1mA into a 2kOhm load. This also protects the electronics. Obviously shorting together is not something that happens at the head but when the electrodes are taken off or fall off the head when still on and come together on the table or desk.

With tDCS nomenclature, the current flows through the Anode, the positive electrode, through the head to the Cathode, negative electrode (forget electrochemistry, diodes etc.). I, like many people, have wondered how much current really goes through the brain. Since the dura mater, connective tissue, and the skull will be more resistive than the fluid just under the skin you would think that most of the current travels tangentially under the scalp but obviously some current goes in to the brain. What I have read is that the closer together the electrodes, the more current travels under the scalp (which makes sense).

From a physiological view, it is more complicated. The head is not a true resistor (but for the circuit design, it works to make this assumption), as the skin, connective tissue, skull and then brain have a non uniform electrical characteristic. For the effect on the brain, research scientists are more concerned with current density and achieving the best current density. Hence another reason why the nice uniform current density of the sponge electrode is the best choice. The drawing below shows an imaging of current density with a 2mA DC stimulation. The red is the section where current is flowing into the brain and blue is the section where current is flowing out of the brain.

Lastly you can calculate the current density by dividing the current of stimulation by the area of the electrode, but just knowing that there is a sufficient size electrode, the correct connection between electrode and scalp, and limiting the stimulation level to 2 mA, then the current density is not a concern.

Tuesday, April 15, 2014

TDCS and Cognitive enhancement success, anybody want to do a video for $50?

We are preparing a video and application to run an Indiegogo campaign. The campaign will be based on Cognitive Enhancement, TDCS, and its ability to successfully improve mental performance. The funding will go towards development of Plato, a Cognitive Enhancement device based on TDCS. As part of the development of Plato, we will later be doing a feasibility study on its safety and side effects.But now we concentrate on cognitive enhancement.

Cognitive enhancement is an exciting, and somewhat controversial, method of altering ones mental capacities and changing behavior. Possibilities include improving attention and memory which would benefit the test taker; increased alertness and focus which would benefit those striving for an edge in productivity, and learn a skill faster for example learning a new language for a job. The cognitive enhancement dialogue has resided mostly in the pharmaceutical realm. With TDCS the momentum is shifting and we want to be there.

So for our campaign, in our video, we will be describing the usefulness of TDCS, describing Plato, and we would like to include the videos of people that have had benefit and success in using TDCS in a cognitive enhancement or mood altering method.  And if the video is chosen (3 - 4 will be chosen) we will be giving $50 to the lucky participant.

Please send a video:

  • 20s - 30s long
  • Describing your success in using TDCS in enhancing mental performance, improving insight, memory, altering mood etc.
  • We are more interested in the description of benefits, the story, and less interested in the montage, treatment protocol, etc.
  • The better quality videos as well as better content will be chosen. 3 - 4 videos will be chosen and each will given $50.00.
  • Decision will be made in early May.
So tell us your story, take a video, and make some money!

Email me with questions, and instructions how to send the video, to

Sunday, March 23, 2014

The Safety of TDCS

About 15 years ago, when I was deep in my studies to become a Doctor of Naturopathic Medicine (I have a medical background, but now I am an EE, and hope to be a successful businessman in a few years time…) my daily experience was immersed in my studies and my colleagues. The subculture would deceive where we truly were: common health problems were low cholesterol and fatigue, there was little obesity, pharmaceuticals as intervention were only the very last resort. This is the perception I have to be aware of when thinking of the safety of TDCS.

I have been an active participant in DIY TDCS for about two years, initially just practicing, then becoming a little more vocal. And in that community the safety of TDCS is so wholeheartedly believed, known, that there is definitely a risk of accusation if speaking otherwise. But then I step out into the “real world”, with scary descriptions and still the “don’t do this at home” mentality. It is important for someone to have this perspective, it is a new technology and there are still questions, but using scare tactics to disregard the technology, or to mock it, or to attempt to slow its dissemination into the general public is foolish, and maybe immoral.
In the research community, the message is similar to the DIY (and much more complicated to read) but definitely more tempered. The work is there: a systematic review on the adverse effects of TDCS found pretty much the same as all the others (39% itching, 22% tingling, 15% headache, 9% burning) (Brunoni 2009). Other papers have similar adverse effects, I have also seen fatigue, the percentages are different, but the adverse effects are similar (a list of some papers below). To be straight, the research is on commercial devices (but not those designed for TDCS), with experienced research personnel running the studies. Not just putting a 9V battery on the head.

But that is the crazy thing about TDCS. People, most likely in the thousands, are putting 9V batteries on their head (hopefully at least through a couple resistors and good electrodes), as well as designing and building simple current regulating circuits to produce real, effective TDCS devices. And the consequences? I have certainly read examples of people saying it is greatly helping with their medical condition, helping them pass exams, learn languages. Is this scientifically proving TDCS, hell no, it is more exciting. It is the beginning of TDCS as it is disseminated through the greater population; psychonauts performing the long term experiments of TDCS that is lacking in the research. These are people experimenting with poor equipment, perhaps making mistakes in their designs or builds, with varied medical conditions, varied personalities (and maybe personality disorders) and the disasters have not occurred (fingers crossed). But despite the scare tactics they are taking the chance and striving nonetheless to better themselves. This is the exciting part.

Arul-Anandam AP, Loo C, Sachdev. Transcranial direct current stimulation - what is the evidence for its efficacy and safety? Medicine Reports 2009, 1:58
 Bikson M, Datta A, lwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol 2009;120(6):1161
 Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A Systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsypharm 2011;14:1133-1145
 Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wasserman EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 2005;64:872-875.
 Nitsche MA, Liebetanz K, Lang N, Antal A, Tergan F, Paulus W. Safety criteria for transcranial direct current stimulation in humans. Clin Neurophysiol 2003; 114(11):2220-2. 
 Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of tDCS concerning healthy subjects and patients. Brain Res Bull 2007;72:208-214.